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The influence of aspect ratio (χ = diameter/thickness) on the vortex shedding
behaviour of fixed, and freely moving, circular disk has been investigated numerically.
The aspect ratio significantly changes the structure of the vortices shed from the disk,
thus altering the fluid induced forces. Disks of χ =2 and 4 were selected, and by
choosing Re = 240 periodic behaviour was observed for both the ‘fixed’ and ‘freely’
moving disks. First, the vortex structures shed from a ‘fixed’ circular disk of χ =2
and 4 were computed for Re = 240. This was followed by a computation of their
trajectories falling ‘freely’ under the action of gravity at Re = 240. For the ‘fixed’ disk
of χ = 2, periodic shedding of one-sided hairpin-shaped vortex loops was observed.
The flow field had a spatial planar symmetry and the vortices were shed from the
same location, resulting in an asymmetric lateral force on the disk. The Strouhal
number (St), calculated using the fluctuation in the axial velocity in the far-wake,
was 0.122. This vortex shedding behaviour is referred to as the ‘single-sided’ vortex
shedding mode. For the ‘fixed’ disk of χ = 4, periodic shedding of hairpin-shaped
vortex loops was observed from the diametrically opposite location of the disk. The
flow field had a spatial planar symmetry, and also a spatio-temporal one, with respect
to a plane orthogonal to the spatial symmetry plane. The shed vortices induced a
symmetric lateral force on the disk with a zero mean. The computed Strouhal number,
was equal 0.122, same as that for χ = 2. This vortex shedding behaviour is referred
as the ‘double-sided’ vortex shedding mode. For the ‘freely falling’ disk of χ =2, an
oscillatory motion was observed in a plane with a 83◦ phase lag between the lateral
and angular velocity. The Strouhal number (Stb), calculated using the oscillation
frequency of the ‘freely’ falling disk was equal to 0.116, which is comparable to the St

of the fixed disk. For a ‘freely falling’ disk of χ =4, oscillatory motion was observed
in a plane with a 21◦ phase lag between the lateral and angular velocity. The Strouhal
number (Stb) was equal to 0.171, which differs from the St observed in the wake of
the fixed disk.

1. Introduction
Circular disks moving freely under the action of gravity are known to display

oscillatory motion in both angular and lateral directions (Willmarth, Hawk & Harvey
1964; Field et al. 1997). The oscillatory motion is an outcome of vortex shedding
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Figure 1. Illustration of the differences in the motion of a freely rising disk as characterized
by Fernandes et al. (2005): (a) χ = 2 − 10 in an inviscid fluid, �φ = 180◦, irrespective of the
aspect ratio; (b) χ = 2 in viscous fluid, �φ ≈ 0◦; (c) χ = 10 in viscous fluid, �φ ≈ 90◦ (�φ is
the phase difference between the inclination of the disk axis and velocity with respect to the
vertical direction).

behind the disk, which induces periodic forces and torques. The onset of oscillatory
motion of a circular disk is governed by two non-dimensional parameters, namely the
Reynolds number (Re = ρf Ud/µ), which indicates the onset of vortex shedding and
the non-dimensional moment of inertia (I ∗ = πλ/64χ , where χ = d/t is the aspect ratio
and λ = ρb/ρf is the density ratio). With increasing Reynolds number, the motion
of a disk undergoes a transition from oscillatory to a continuous rotational motion,
also known as tumbling or auto-rotation (Field et al. 1997). Although gyrational
motion of circular disks about the vertical axis has been observed at very high
Reynolds numbers (Stewart & List 1983), the angular motion is typically limited to
an axis orthogonal to the vertical direction at medium Reynolds number. Such a
gyrational motion could be due to rotation of the vortex shedding location along the
circumference at higher Reynolds numbers (Berger, Scholz & Schumm 1990; Shenoy
& Kleinstreuer 2008). Similar oscillatory motion has been observed for freely moving
plates (Belmonte, Eisenberg & Moses 1998), spheres (Magarvey & Maclatchy 1965;
Jenny, Dušek & Bouchet 2004) and cylinders (Marchildon, Clamen & Gauvin 1964).

Recent experiments by Fernandes et al. (2005) have indicated significant differences
in the motion of freely rising disks when the aspect ratio was varied. The difference
in their behaviour was quantified in terms of the phase difference (�φ) between the
inclination of the disk axis and velocity with respect to the vertical direction. The
phase difference was found to vary from −4◦ to 110◦ for the aspect ratio range χ =
1.8–15. An illustration of the influence of the aspect ratio on the motion of the disk
is shown in figure 1(a–c). A disk in an inviscid fluid has a constant phase difference
of 180◦, irrespective of the aspect ratio as shown in figure 1(a). In figure 1(b), the
thick disk moves with its axis nearly tangential to the trajectory (�φ ≈ 0), whereas
in figure 1(c) a thin disk rises with its axis nearly perpendicular to the trajectory
(�φ ≈ 90◦). The aspect ratio of the disk influences the structure of shed vortices
which in turn influence its motion. A more recent paper (see Fernandes et al. 2008)
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have focused on the differences in vorticity-induced forces and torques on the disk as
a function of aspect ratio and their roles in affecting its motion.

Previously, Shenoy & Kleinstreuer (2008) studied the transition process of flow
over a circular disk with χ = 10 for 10 � Re � 300. They observed the presence of
a spatio-temporal symmetry in the wake due to alternately shed vortices, unlike
the single-sided vortices observed in the wake of a sphere (Johnson & Patel 1999).
The lateral forces on the disk varied symmetrically between positive and negative
values, unlike for a sphere where the lateral force and torque were unidirectional.
This indicates that the vortex structures are essentially different between a sphere and
a thin disk and hence potentially between thick and thin disks. A recent numerical
study conducted by Auguste, Fabre & Magnaudet (2010) for flow over a disk of χ =3
for a range of Reynolds numbers [150, 218] has also identified changes to the vortex
structures in the wake.

The primary goal of the present study is to understand the role of aspect ratio
in modifying the vortex structure behind a stationary disk and further its influence
on the motion of a freely falling disk. This theoretical study is an attempt to
achieve a more realistic description of non-spherical particle dynamics in dilute
suspension flows. Sample applications include physiological flows such as motion of
cells/platelets (Skotheim & Secomb 2007), inhaled particles and targeted drug delivery
in human lung airways (Crowder et al. 2002; Kleinstreuer, Zhang & Donohue 2008;
Wang et al. 2008), where non-spherical particle motion is approximated using a
equivalent aerodynamic diameter, industrial applications (Yin et al. 2004; Ablev,
Valent & Holland 2007) and Bio-MEMS (Kleinstreuer 2006). For realistic simulation
of particulate flows, accurate modelling of single non-spherical particle behaviour is
essential. A freely falling circular disk is considered as a prototypical non-spherical
object, whose non-sphericity is quantified by the aspect ratio.

In this paper, we present the impact of the disk aspect ratio on the vortex structure
in the wake of a ‘fixed’, and its influence on the motion of a ‘freely’ falling disk.
The flow over stationary disks of aspect ratios χ = 2 and 4 is computed at Re = 240,
to identify the changes in vortex structures with aspect ratio. This is followed by a
discussion of the motion of such disks during free fall where we observe a significant
influence of the aspect ratio on the characteristics of the trajectory. The choice of
Re =240 ensured a periodic behaviour for both the fixed and freely moving disks of
χ =2 and 4.

2. Numerical formulation
The transient three-dimensional incompressible flow fields around a stationary and

freely falling circular disk of diameter d and aspect ratio (χ = d/t) of 2 and 4 have been
computed for Re = 240. The numerical solution of the incompressible Navier–Stokes
equations were carried out using the finite-volume-based commercial code CFX-10.0
(ANSYS Inc., 2005). This numerical program relies on an unstructured body-fitted
grid with collocated pressure and velocity nodes. The numerical algorithm is based
on the SIMPLEC methodology (Van Doormaal & Raithby 1984) with Rhie–Chow
interpolation scheme (Rhie & Chow 1983) to prevent the decoupling of the pressure
and velocity fields, typically observed on collocated grids. A second-order implicit
backward-Euler scheme for time stepping was used, while the advection terms were
evaluated using a high-resolution scheme (Barth & Jespersen 1989). A hexahedral
mesh with an O-grid topology was generated using the commercial grid generation
software ICEM-CFD (ANSYS Inc., 2007). A refined mesh was implemented close
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Figure 2. Stationary disk: (a) Computational domain and grid structure for flow over a
stationary disk; (b) axial velocity sampling locations (A, B, C and D) at z = 5d at a radial
distance of 0.5d and a azimuthal spacing of 90◦.

to the surface of the disk in both axial and radial directions to accurately capture
steep gradients. For computing the motion of the freely moving disk, an arbitrary
Lagrangian–Eulerian (ALE) formulation was used. The six degrees of freedom of the
disk motion was coupled to the fluid solver, using a pseudo-implicit algorithm.

Identification of the vortical regions was performed using the λ2-criterion proposed
by Jeong & Hussain (1995), namely

λ2(S2 + ω2) < 0, (2.1)

where λ2 is the intermediate eigenvalue of the symmetric tensor S2 + ω2, while S
and ω are the rate of strain and vorticity tensors, respectively. Although numerous
techniques exist for identifying the vortex regions, including a frame-independent
method proposed by Haller (2005), we have decided to use the λ2-criterion for
comparison with existing numerical results.

2.1. Stationary disk

A cylindrical computational domain with a cross-section of diameter Dc = 12d was
situated along the z direction (see figure 2) with the centre of the disk located on
the z-axis and its upstream surface in the xy plane. The domain extended zd = 15d

downstream and zu =2.5d upstream of the disk. The domain was discretized into
59 556 elements with 61 836 nodes. The non-dimensional forms of the Navier–Stokes
equations (2.2) were solved with the boundary conditions given in (2.4):

∂V
∂t

+ V · ∇V = −∇p +
1

Re
∇2V , (2.2)

∇ · V = 0, (2.3)

V (x, y, zu, t) = (0, 0, 1); V (x, y, z, t)|∂σ = 0; p(x, y, zd, t) = 0, (2.4)

where ∂σ and ∂Σ represent the surface of the disk and free stream, respectively. A
fixed time step (�t) which yielded approximately 100 points in one period of the
dominant frequency was used along with the stability criterion of CFL < 1. The time
history of the axial velocity was recorded at z = 5d from the rear surface of the
disk. At each axial location, the velocity was sampled at four points (A, B, C, D)
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Figure 3. Falling disk: (a) computational domain and grid structure for a freely moving disk
falling vertically along the negative z-axis; (b) grid structure in the neighbourhood of the disk.

at a radial distance of 5d and azimuthal spacing of 90◦ (see figure 2b). The effects
of computational domain size and grid spacing on the results have been previously
evaluated by Shenoy & Kleinstreuer (2008) and were found to be negligible. The drag
coefficient (Cd) in the axial direction was computed for the Reynolds number range of
10–100 and compared with experimental results by Ross & Willmarth (1971) showing
a good match. Further comparison with computational results of the vortex shedding
frequency (Fernandes et al. 2007) has been included to validate our computational
results (see § 3).

2.2. Moving disk

A moving grid formulation was employed for computing the motion of the freely
falling disk. The grid was fixed to the disk surface and the computational domain
moved along with the disk. The computational domain consisted of a spherical volume
of radius R = 20d (see figure 3a) that enclosed a circular disk located at the origin,
with its axis oriented along the z direction. All the simulations were performed using
a grid of 253 346 elements with 257 760 nodes. The motion of the body was computed
in the moving non-inertial xyz -coordinate system fixed to the centroid of the disk and
oriented along its principal axis, as shown in figure 4. The fluid computations were
performed in the fixed coordinate system, namely XYZ. The body parameters in the
XYZ-coordinate system are identified by tilded variables (Ũ, Ω̃, F̃, T̃ ).

To compute the fluid motion in a moving grid configuration, an integral formulation
of the governing equations (Demirdz̆ić & Peric 1990) was used:

d

dt

�
V

ρ dV +
�
∂V

ρ(V − W ) · dS = 0, (2.5)

d

dt

�
V

ρ VdV +
�
∂V

[ρ(V − W )V − Π] · dS = 0. (2.6)
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Figure 4. Coordinate systems used for computing body motion. XYZ : fixed coordinate system
used for computing fluid motion; xyz : moving coordinate system fixed to the disk used for
computing body motion.

The control volume V is bounded by a surface ∂V which moves with the velocity
W . The stress tensor Π for incompressible Newtonian fluid is given as

Π = −p I + µ(∇V + ∇V T ). (2.7)

In addition to these equations, the space conservation law needs to be satisfied to
prevent artificial mass sources (Demirdz̆ić & Peric 1988):

d

dt

�
V

dV −
�
∂V

W · dS = 0. (2.8)

The following boundary conditions were applied to the surface of the disk (∂σ ) and
the far field (∂Σ):

(V − W )|∂σ = 0, p(∂Σ, t) = 0. (2.9)

The computational domain surrounding the disk moves with the disk and has a grid
velocity given by

W (r, t) = Ũ(t) + Ω̃(t) × (r − rc), (2.10)

where Ũ and Ω̃ , are the translational and angular velocity of the body whose centre
of mass is located at r c with respect to the XYZ -coordinate system. It can be easily
seen that this grid motion satisfies the geometric conservation law (2.8). The force
and torque acting on the disk due the fluid are computed as

F̃ =

∫ ∫
∂σ

Π · dS, T̃ =

∫ ∫
∂σ

(r − rc) × Π · dS. (2.11)

The above equations compute the flow field for a prescribed motion of the grid points
which move with the disk. In the present case, the grid points do not move relative
to each other but the entire computational domain is rotated and translated along
with the disk according to the relationship (2.10). In this paper, we used a pseudo-
implicit scheme in which the inviscid contributions are treated implicitly but the
viscous contributions are treated explicitly. A generalized Kirchhoff–Kelvin equation
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was used to describe the body motion (Mougin & Magnaudet 2002):

(mI + A)
dU
dt

+ Ω × (mU) = F + (m − mf )g, (2.12)

(J + D)
dΩ

dt
+ Ω × (JΩ) = Γ, (2.13)

where A, D are the added mass tensors for translational and rotational motion,
respectively; J is the moment of inertia tensor; mf = ρf π d3/4χ is the mass of
the displaced fluid; and g, U and Ω are the linear velocity, angular velocity and
gravitational vector, respectively, in the xyz-coordinate system. These tensors are
diagonal if the coordinate system is aligned with the principal axes of the body and
independent of the body orientation, as the xyz -coordinate system is fixed to the
body and hence needs to be computed only once (see Appendix A for details). The
cross-product terms in (2.12) and (2.13) are due to the non-inertial frame of reference,
namely xyz.

The orientation of the body-fixed coordinate system, relative to the global
coordinate system was expressed using the x-convention of the Euler angles (φ, θ, ψ),
as described in Goldstein, Poole & Safko (2002). Due to the singularity in the equation
governing the rate of change in Euler angles, the Euler parameters Θ =(ε1, ε2, ε3, η)T

were used for tracking the body orientation, replacing the Euler angles. The Euler
angles were then back calculated from the Euler parameters. The equations governing
the change in the Euler parameters is given by

dΘ

dt
= E Ω, (2.14)

where E is a function of Θ (see Appendix B for details). Since the fluid computations
were performed in the XYZ -coordinate system, the fluid forces on the disk need to
be transformed to the xyz-coordinate system using the rotational matrix R, which is
a function of Θ: [

F, T, g
]T

= R
[

F̃, T̃, g̃
]T

, (2.15)[
Ũ, Ω̃

]
= RT

[
U, Ω

]T
. (2.16)

The velocity of the body (U, Ω) in the xyz -coordinate system was determined by
solving (2.12). The grid velocity (W ) was then obtained by transforming the body
velocity into the XYZ -coordinate system using (2.10) and (2.16). The above system of
equations produced stable results for CFL < 1. The equations for the body dynamics
were solved using a Runge–Kutta solver (RK45) (Press et al. 1992).

The oscillatory motion of the disk did not significantly influence the vertical
velocity, a fluctuation of ±1.2 % was observed. The Reynolds number was then
calculated using the average vertical velocity (Ū∞). The computed average terminal
was compared with theoretical velocity assuming a drag coefficient Cd,∞ = 1.2 for
all aspect ratios (Ross & Willmarth 1971). The computed results for the terminal
velocity in table 1 show good comparison with theoretical calculations. To validate
the numerical model, sedimentation of a sphere starting from rest was computed for
two different Reynolds numbers, namely Re = 41 and 280. The temporal evolution of
the sphere velocity (U ) was compared with experimental results obtained by Mordant
& Pinton (2000) for a freely falling sphere over a wide range of Reynolds numbers
(40–70 000). For that Reynolds number range, the following similarity relationship
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U∞ =

√
2(λ − 1)gd

χ Cd,∞
Ū∞

χ ν × 104 (Theoretical) (Numerical)

2 11.91 0.286 0.290
4 8.42 0.202 0.196
5 7.53 0.181 0.178
6 6.87 0.165 0.160
8 5.95 0.143 0.150

10 5.33 0.128 0.132

Table 1. Comparison of theoretically estimated velocity values with numerical results for
Re = 240 using Cd,∞ = 1.2, d = 1, ρf = 1, ρb = 1.01, g = 9.8.

was observed:

u∗(t∗) =
U

U∞
= 1 − e−t∗

, (2.17)

where U∞ is the terminal velocity, t∗ = 3t/t95, and t95 is the time at which U = 0.95 U∞.
A comparison of the experimental result with present computations is shown in
figure 5(a), which indicates a good match for both Re = 41 and 280.

Temporal evolution of the terminal velocity during the sedimentation of circular
disks of aspect ratios 1, 2, 6 and 10 was computed at Re =41 (see figure 5b). The
temporal evolution of the different disks do not fall on a single curve, potentially
due to differences in Cd at the lower Reynolds numbers where frictional forces play
a crucial role as well as the boundary layer development (Basset history term). The
sedimentation velocity history for χ = 10 and Re = 41 was used as a test case to
determine the effects of domain size and grid resolution (see figure 5c). Computations
were performed using a larger computational domain of size R = 30d with the same
grid spacing as used in the previous computations. Furthermore, grid interdependence
was verified by using a finer mesh (543 366 elements and 535 392 nodes).

Next we compare the computed phase difference (�φ) between the inclination
of the disk axis and velocity with respect to the vertical direction with experimental
results (Fernandes et al. 2005) at Re = 240 (see figure 6). We observe a good match for
χ = 6, 8 and 10, with a discrepancy for χ = 2 and 4. The overall trend of an increasing
phase difference with aspect ratio has been accurately predicted. A comparison of the
oscillation frequencies of freely rising disks (Fernandes et al. 2007), namely Strouhal
number St =0.107 for χ = 2 and St = 0.261 for χ = 10, confirm our computational
results of St = 0.116 for χ = 2 and St = 0.242 for χ = 10, respectively. The above
results indicate that the numerical scheme and computational parameters have been
sufficiently validated against available experimental data.

3. Results
Numerical computations of flow over a ‘fixed’ disk of χ = 2 and 4 were performed

at Re =240. Periodic vortex shedding was observed for both aspect ratios but with
significantly different vortex structures, which influenced the forces acting on the disks.
Two different vortex shedding modes were observed, namely: (a) ‘single-sided’ vortex
shedding, for χ =2, (b) ‘double-sided’ vortex shedding, for χ = 4. Next, we computed
the motion of the above mentioned disks, falling ‘freely’ under the action of gravity
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Figure 5. Validation of the computational model by a comparison of the computed temporal
evolution of the vertical velocity: (a) freely falling sphere at Re = 41 and 280, compared against
the experimental results obtained by Mordant & Pinton (2000); (b) freely falling disk, with
different aspect ratios, at Re = 41 showing the influence of the aspect ratio; (c) freely falling
disk at Re = 41 and χ = 10 computed for both ‘coarse’ and ‘fine’ mesh with a domain size of
R = 20d , and a larger domain of size R = 30d .
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χ Vortex structure Symmetry St Lateral force
2 Single-sided Spatial plane 0.122 Asymmetric
4 Double-sided Spatial plane and a spatio-temporal 0.122 Symmetric

Table 2. Summary of the computed vortex shedding behaviour behind a fixed circular disk
at Re = 240, where the Strouhal number St is calculated using the axial velocity fluctuations.

χ Lateral amplitude Angular amplitude �Φ Stb

2 0.232d 26.82◦ 83◦ 0.116
4 0.159d 25.71◦ 21◦ 0.171

Table 3. Summary of the motion of a freely moving circular disk at Re = 240, where d is the
diameter of the disk, �Φ is the phase difference between lateral and angular velocity and Stb
is the Strouhal number calculated using the body oscillations.
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Figure 6. Comparison of the computed phase difference (�φ) with experimental data
(Fernandes et al. 2005).

at Re = 240 (based on the mean vertical velocity). Periodic oscillatory motion was
observed for both the disks but their trajectories differed in terms of the phase
relationship between the lateral and angular oscillations. The disk of χ = 2 oscillated
with a Strouhal number (Stb) nearly equal to that observed for the fixed disk due to
vortex shedding. In contrast, the disk χ =4 oscillated at a higher frequency than the
vortex shedding observed behind the fixed disk. A summary of the observed results
is provided in table 2 for the fixed disk and table 3 for the freely moving disk.

3.1. Fixed disk

In this section, we describe the vortex shedding phenomena observed behind a fixed
disk of χ = 2 and 4 at Re = 240. Periodic shedding of hairpin-shaped vortex loops was
observed in the wake of both the disks at a Strouhal number (St = f d/U ) of 0.122.
For χ = 2, the vortex loops were oriented along the same direction hence refereed to
as ‘single-sided’ by Perry, Lim & Chong (1980) and as the ‘zig-zig’ mode by Auguste
et al. (2010). Similar vortex structure have been observed in the wake of a sphere
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Figure 7. Temporal evolution of vortex structures visualized using the λ2-criterion for the
‘single-sided’ vortex shedding mode, in the wake of a fixed disk of χ = 2 at Re = 240, with the
free-stream oriented along the positive z direction. The vortex structure shed from the disk is
marked p and the induced vortex structure is marked s.

at moderate Reynolds numbers (Achenbach 1974). The vortex structures observed
in the wake were visualized using the λ2-criterion and are shown in figure 7 for a
single vortex shedding period. For more detailed visualizations, animations of the
vortex shedding process have been included in the on-line supplementary material
(Movie 1, available at journals.cambridge.org/flm).

For χ = 4, the vortex loops were shed alternately from diametrically opposite
location of the disk; a three-dimensional version of the vortex street observed behind
a 2d cylinder, hence refereed to as ‘double-sided’ by Perry et al. (1980) and as the ‘zig-
zag’ mode by Auguste et al. (2010). Experimental evidence of double-sided vortices
in a wake have been previously reported by Perry et al. (1980) and Brücker (2001).
The vortex structures observed in the wake were visualized using the λ2-criterion
and are shown in figure 8 for a single vortex shedding period. For more detailed
visualizations, animations of the vortex shedding process have been included in the
on-line supplementary material (Movie 2).
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Figure 8. Temporal evolution of vortex structures visualized using the λ2-criterion for the
‘double-sided’ vortex shedding mode, in the wake of a fixed disk of χ = 4 at Re = 240, with the
free-stream oriented along the positive z direction. The vortex structure shed from the disk is
marked 1 and 2.

3.1.1. Single-sided vortex shedding

In this section, we describe the single-sided vortex shedding observed behind the
disk of χ = 2 (see figure 7). This mode is characterized by one-sided vortex loops shed
from the wake (labelled p in figure 7) from a fixed azimuthal location. Also observed
in figure 7 is an induced vortex (labelled s) formed near the leg of the separating vortex
(p). This induced vortex has an opposite sign as the shed vortex and is generated due
to the interaction of the near wake flow to separating vortex. This wake structure
bears strong similarity to that observed behind a sphere by Johnson & Patel (1999).
Shedding of the single-sided vortex (p) induces asymmetric lateral force and torque
on the disk. The vortex structure (s) is not shed from the wake and hence does not
induce any force/torque on the body. Further, a symmetry plane normal to the xy
plane and passing through the z -axis was observed. The orientation of this plane to
the x -axis was a function of the bias induced by the numerical approximation. The
symmetry plane is shown in figure 9, where the axial vorticity contours are projected
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Figure 9. Axial vorticity (ωz) contours projected on the xy plane at z = 5d , for three different
time intervals of the period T , indicating the presence of a symmetry plane during ‘single-sided’
vortex shedding for χ = 2 at Re = 240.
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Figure 10. Flow structures in the near wake region of a fixed disk of χ = 2 at Re = 240
for two temporal locations separated by half the period, namely T : (a) azimuthal vorticity
contours projected onto the symmetry plane; (b) limiting streamlines (shown with arrows)
and axial vorticity contours projected on the xy plane near the disk surface, where solid and
dashed contour lines indicate positive and negative values, respectively.

on a xy plane at z = 5d for three different temporal locations. Presence of a symmetry
plane implies that there are no lateral forces normal to the symmetry plane.

To further understand the nature of the vortex structures, the azimuthal vorticity
(ωθ ) contours projected onto the symmetry plane are shown in figure 10(a) for two
different time intervals separated by half the period of the vortex shedding period
(see online supplementary material Movie 3). The vorticity contours clearly indicate
the asymmetric vortex shedding observed for χ = 2, where vorticity is shed only from
the bottom part of the wake. The limiting streamlines near the rear surface of the
disk, along with the axial vorticity (ωz) contours, are shown in figure 10(b). The axial
vorticity contours indicate the presence of a vorticity dipole for ‘single-sided’ mode.
The limiting streamlines near the disk surface form a stationary node on the rear
surface of the disk, which remains stationary throughout the vortex shedding cycle,
similar to that observed for a sphere (Johnson & Patel 1999).
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Figure 11. Influence of the ‘single-sided’ vortex shedding mode on the axial velocity variation
in the wake at z = 5d for χ = 2 at Re = 240: (a) temporal variation of axial velocity at angular
location of A, B, C and D (see figure 2b); (b) Lissajous pattern of axial velocity at locations
A and D.
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Figure 12. Influence of the ‘single-sided’ vortex shedding mode on the drag (Cd ) and lift
coefficient (Cl) for χ = 2 at Re = 240: (a) temporal variation of Cd and Cl; (b) Lissajous plot
of Cd and Cl .

Next we look in figure 11(a) the temporal variation of axial velocity sampled at the
location z = 5d (see figure 2b). The velocity in the wake fluctuated at St = 0.122. A
comparison of the axial velocities at locations A, B, C and D, shown in figure 11(a),
indicates the presence of a symmetry plane, as the velocity at location A matches
that at B; similarly, there is a correlation between axial velocity at locations C
and D. Furthermore, a phase difference of 180◦ was observed between the velocity
fluctuations at locations A and D. A Lissajous plot of the axial velocity fluctuation
is shown in figure 11(b), where we observe that for χ = 2 there is a single loop. In the
figure 12(a), periodic variation of the drag (Cd), and lift coefficient (Cl), which was
computed using the lateral force acting along the symmetry plane, is shown. The drag,
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Figure 13. Axial vorticity (ωz) contours projected on the xy plane at z = 5d for three different
time intervals of the period T , indicating the presence of a symmetry plane during single-sided
vortex shedding for χ = 4 at Re = 240.

and lift coefficient, were found to vary at the same frequency as the axial velocity
fluctuation for the ‘single-sided’ mode with Cl having a phase lead of ≈10◦. In fact,
Cl did not change sign, remaining positive in this case, through-out the period. A
Lissajous plot of Cd and Cl , shown in figure 12(b) also indicates a single loop. We
also performed simulations for a disk with χ =1 at Re = 400 as no vortex shedding
occurred at Re = 240 and also observed the ‘single-sided’ mode. The ‘single-sided’
vortex shedding leads to asymmetric forces and torque acting on the disk.

3.1.2. Double-sided vortex shedding

In this section, we describe the double-sided vortex shedding observed behind χ =4
(figure 8). In contrast to that observed for χ = 2, the vortex structures shown in
figure 8 for χ = 4 consist of two vortices, namely 1 and 2 of equal strength but
opposite sign and they shed from diametrically opposite locations of the disk. This
difference in vortex shedding indicates that the wake structure is a function of the
aspect ratio, along with the previously known influence of the Reynolds number
(Shenoy & Kleinstreuer 2008; Auguste et al. 2010). A spatial symmetry plane was
observed, similar to that for χ = 2, along with a spatio-temporal plane orthogonal to
the spatial symmetry plane. The shedding of symmetric oppositely oriented vortices
is reminiscent of the flow structures behind a two-dimensional cylinder (Barkley &
Henderson 1996). Due to the symmetric vortex shedding we can expect the lateral
forces and torques to vary symmetrically between positive and negative values, i.e.
with a zero mean. The symmetry plane is shown in figure 13, where the axial vorticity
contours are projected on a xy plane at z = 5d for three different temporal locations.
Figure 13 also illustrates the observed spatio-temporal symmetry.

To further understand the nature of the vortex structures, the azimuthal vorticity
(ωθ ) contours projected onto the symmetry plane are shown in figure 14(a) at two
different time intervals separated by half the period of the velocity fluctuation, namely
T . The vorticity contours indicate a symmetric shedding from the top and bottom part
of the wake (see online supplementary material Movie 4). The limiting streamlines
near the rear surface of the disk, along with the axial vorticity (ωz) contours are also
shown in figure 14(b). The axial vorticity contours indicate the presence of a vorticity
quadrupole. The limiting streamlines form a stretched node, and it displays lateral
motion during the vortex shedding cycle.

In figure 15(a), we look at the temporal variation axial velocity sampled at the
axial location of z = 5d (see figure 2b). The velocity in the wake fluctuated with
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Figure 14. Flow structures in the near wake region of a fixed disk of χ =4 at Re =240
for two temporal locations separated by half the period, namely T : (a) azimuthal vorticity
contours projected onto the symmetry plane; (b) limiting streamlines (shown with arrows)
and axial vorticity contours projected on the xy plane near the disk surface, where solid and
dashed contour lines indicate positive and negative values, respectively.
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Figure 15. Influence of the ‘double-sided’ vortex shedding mode on the axial velocity variation
in the wake at z = 5d for χ = 4 at Re = 240: (a) temporal variation of axial velocity at angular
location of A, B, C and D (see figure 2b); (b) Lissajous pattern of axial velocity at locations
A and D.

St = 0.122. A comparison of the axial velocities at locations A, B, C and D, shown in
figure 15(a), indicates the presence of a symmetry plane as the velocity at location A
matches that at B; similarly there is a correlation between axial velocity at locations
C and D. Furthermore, a phase difference of 180◦ was observed between the velocity
fluctuations at locations A and D. A Lissajous plot of the axial velocity fluctuation
is shown in figure 15(b), where we observe that for χ = 4 there is a double loop.
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Figure 16. Influence of the ‘double-sided’ vortex shedding mode on the drag (Cd ), and lift
coefficient (Cl) for χ = 4, at Re = 240: (a) temporal variation of Cd and Cl; (b) Lissajous plot
of Cd and Cl .

In figure 16(a) periodic variations of the drag (Cd), and lift coefficient (Cl), which
was computed using the lateral force acting along the symmetry plane, are shown. The
lift coefficient was found to vary at the same frequency as the axial velocity fluctuation
but the drag coefficient had fluctuations of twice the frequency. This difference,
i.e. doubling in frequency, can be attributed to the ‘double-sided’ vortex shedding
observed for χ = 4. The ‘double-sided’ vortex shedding resulted in lift coefficient
varying symmetrically in the positive and negative direction, a resultant of the
spatio-temporal symmetry (see figure 16a). A Lissajous plot of Cd and Cl , shown
in figure 16(b), indicates a double-looped structure similar to that observed for the
velocity Lissajous plot (see figure 15b). The ‘double-sided’ vortex shedding leads to
symmetric forces and torque to act on disk.

3.2. Moving disk

In this section, we describe the motion of a freely falling disks of χ = 2 and 4 computed
at Re = 240. The disk was released from rest and allowed to fall vertically against the
action of gravity. After a period of steady fall, vortex shedding was observed behind
the disk which eventually led to periodic lateral and angular oscillations.

3.2.1. Motion of a disk of χ = 2

The three-dimensional trajectory of the disk of χ =2 is shown in figure 17(a),
where it can be seen observed that the motion of the disk lies in a plane, where
it should be noted that the z -axis is scaled differently compared to the xy-axes.
The lateral oscillations of the disk are coupled with angular oscillations as shown
in figure 17(b), where the motion of the disk is plotted in its plane of oscillation.
The vortex structures shed from the disk using the λ2-criterion is shown in figure
17(c) for a period of oscillation. For a more detailed visualization, animations of the
vortex shedding process have been included in the on-line supplementary material
(Movie 5). The movie shows the vortex regions determined with the λ2-scheme, while
the trajectory of the disk agrees with the experimental observations by Fernandes
et al. (2007).

The disk oscillated at Stb = 0.116, which is comparable to the Strouhal number
(St = 0.122) observed in the wake of the ‘fixed’ disk. In figure 18(a), the variation
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Figure 17. Trajectory of a freely falling disk of χ = 2 at Re = 240: (a) three-dimensional
trajectory of the disk; (b) motion of the disk in its oscillation plane; (c) vortex structures
behind the disk visualized using the λ2-criterion for single period of oscillation.

in lateral and angular displacements is plotted for different vertical locations for
χ = 2. The figure indicates a lateral displacement amplitude of approximately 0.232d ,
which compares with the value of 0.22d obtained experimentally by Fernandes et al.
(2007). The angular displacement has an amplitude of 26.82◦, which is higher than the
experimental value of 18◦ (Fernandes et al. 2007). From figure 18(a), comparing the
lateral and angular displacements, we see that the disk has zero angular displacement,
i.e. its axis is vertical at the extreme lateral positions. In figure 18(b) the linear
and angular velocities are plotted for different vertical locations and χ =2. The
lateral velocity in figure 18(b) has an amplitude of 0.093 and the angular velocity
has an amplitude of 10.16 degree s−1. The angular and lateral velocities have a
phase difference of 83◦, which compares with the experimental measurement of 97◦

(Fernandes et al. 2007). This implies that at the extremum of lateral displacement,
where the lateral velocity is zero, the angular velocity is close an extremum.

3.2.2. Motion of a disk of χ =4

The motion of a freely falling disk of χ = 4 was computed at Re =240. The disk was
released from rest and allowed to fall vertically against the action of gravity. After a
period of steady fall, vortex shedding was observed behind the disk which eventually
led to periodic lateral and angular oscillations. The three-dimensional trajectory of
the disk is shown in figure 19(a), where it can be seen that the motion of the disk



Influence of aspect ratio on the dynamics of a freely moving circular disk 481

v

ω (deg. s–1)

–0.10 –0.05 0 0.05 0.10

–10 –5 0 5 10

–45

–40

–35

–30 v
ω

y/d

θ (deg.)

z/d

–0.3 –0.2 –0.1 0 0.1 0.2 0.3

–20 0 20

–45

–40

–35

–30

y/d
θ

(a) (b)

Figure 18. Planar oscillatory planar motion of a freely falling disk of χ = 2 at Re =240: (a)
lateral and angular displacements as a function of the vertical displacement; (b) lateral and
angular velocities as a function of the vertical coordinate.

lies in a plane. It should be noted that the z -axis is scaled differently compared to
the xy-axes. The lateral oscillations of the disk are coupled with angular oscillations
as shown in figure 19(b), where the motion of the disk is plotted in its plane of
oscillation. The vortex structures shed from the disk using the λ2-criterion is shown in
figure 19(c) for a period of oscillation. For a more detailed visualization, animations
of the vortex shedding process have been included in the on-line supplementary
material (Movie 6). The movie visualizes the vortex regions determined with the
λ2-scheme. The trajectory of the disk agrees with the experimental observations by
Fernandes et al. (2007).

The disk oscillated at Stb = 0.171, which is considerably higher than the Strouhal
number (St = 0.122) observed in the wake of the fixed disk. In figure 20(a), the
variation in lateral and angular displacements is plotted for different vertical locations.
The figure indicates a lateral displacement amplitude of approximately 0.159d . The
angular displacement has an amplitude of 25.71◦. From figure 20(a), comparing
the lateral and angular displacements, it is apparent that the disk exhibits maximal
angular displacements at the extreme lateral positions. In figure 20(b), the linear and
angular velocities are plotted for different vertical locations. The lateral velocity in
figure 20(b) has an amplitude of 0.0812 and the angular velocity has an amplitude
of 10 degree s−1. The angular and lateral velocities have a phase difference of 21◦

which differs from the experimental measurement of 51◦ (Fernandes et al. 2007). This
discrepancy was previous noted in figure 6 and would require further improvement
of the numerical model.



482 A. R. Shenoy and C. Kleinstreuer

X

–0.5
0

0.5

Y

0

0.5

Z

–40

–20

y

x

z

x y

z

(a) (b)

Figure 19. Trajectory of a freely falling disk of χ = 4 at Re = 240: (a) three-dimensional
trajectory of the disk; (b) motion of the disk in its oscillation plane; (c) vortex structures
behind the disk visualized using the λ2-criterion for single period of oscillation.

4. Conclusion
In this study, employing an experimentally validated computer simulation model,

we first analysed the flow field around a fixed disk of χ = 2 and 4 at a fixed Reynolds
number of 240. The aspect ratio was found to significantly affect the vortex structures
in the wake of the disk. Two different vortex shedding modes were identified as (see
table 2):

(a) ‘Single-sided’ vortex shedding (χ =2): characterized by one-sided vortex loops
(see figure 7) and asymmetric lateral forces (see figure 12a). A ‘spatial’ symmetry
plane was observed in the flow field. The Strouhal number calculated using the axial
velocity fluctuation was 0.122. This vortex shedding mode is similar to that observed
in the wake of a fixed sphere at moderate Reynolds numbers (Johnson & Patel 1999).

(b) ‘Double-sided’ vortex shedding mode (χ =4): characterized by double-sided
vortex loops which are shed alternately from diametrically opposite locations (see
figure 8), resulting in symmetric positive and negative lateral forces (see figure 16b). A
spatial symmetry plane (similar to that for χ =2) and a ‘spatio-temporal’ symmetry
plane was observed in the flow field. The Strouhal number, calculated using the axial
velocity fluctuation, was 0.122.

The motion of the disks of χ = 2 and 4, falling freely due to the action of gravity at
a fixed Reynolds number of 240 was computed. A comparison of their motion showed
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Figure 20. Oscillatory planar motion of a freely falling disk of χ = 4 at Re =240: (a) lateral
and angular displacements as a function of the vertical displacement; (b) lateral and angular
velocities as a function of the vertical coordinate.

considerable difference in the trajectories of the disks. The disk of χ = 2 oscillated
at nearly the same frequency as the vortex shedding observed behind a fixed disk of
χ =2. The motion was characterized by the phase difference between the lateral and
angular velocities, which was found to be a lag of 83◦. The disk of χ = 4 oscillated at
a Strouhal number of 0.171, which is higher than the fluctuation frequency observed
behind the fixed disk, namely St = 0.122. The phase difference between the lateral
and angular velocities was found to be a lag of 21◦. The phase difference between
lateral and angular velocities, obtained from our numerical simulations, although
match observed experimental trend (Fernandes et al. 2007), differ in magnitude. This
deviation could mean an improvement in our numerical model for representing the
fluid–structure interaction.

Future work on the influence of aspect ratio (non-sphericity) on the motion of
axisymmetric objects such as disks, ellipsoids, etc. is planned. This study would help
develop realistic models for computing trajectories of these particles in complex flow
fields observed, for example, in the human respiratory tract.
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Appendix A. Virtual mass coefficient
The virtual-mass tensors (A) for translational motion of a disk (see (2.13)) has been

computed by Loewenberg (1993) and curve-fitted by Fernandes et al. (2008) using the
following expressions:

A11 = A22 =
7d3ρf

12
χ−3/4, (A 1)

A33 =
d3ρf

3
(χ + 0.5χ1/2). (A 2)

The added moment of inertia tensor (D) for rotational motion of a disk (see (2.12))
has been estimated by Fernandes et al. (2008) by following an expression based on
the known asymptotic value for a flat disk, i.e. when χ → ∞:

D11 = D22 =
d3ρf

90
(χ + 0.8χ1/2). (A 3)

In the present study, we computed A and D by solving the Laplace equation for the
potential function Φ for inviscid flow over a disk subject to an impulsive motion
(Milne-Thomson 1996). The normal velocity boundary condition was applied to the
disk surface (∂σ ) and the far field was assumed to be unaffected by the motion. The
computational grid shown in figure 3 was used to solve for Φ . Specifically,

n · ∇Φ|∂σ = n · (�Ũ + r × �Ω̃), Φ(r → ∞) = 0, (A 4)

where n is the unit normal to the disk surface, �U and �Ω are the imposed changes in
linear and angular velocities. To determine A, we set �Ω = 0, �U = (1, 1, 1) and solved
the Laplace equation to obtain Φ . The added-mass coefficient is then determined by
integrating the force due to the impulse pressure, namely � = −ρf Φ over the disk
surface as shown below:

Aii = −ei ·
�
∂σ

� dS, (A 5)

where ei is a unit vector along the ith direction. Similarly, to determine D11 we set
�U = 0 and �Ω = (1, 0, 0) and solved the Laplace equation to obtain Φ . The added-
moment of inertia coefficient is then determined by integrating the torque due to the
impulse pressure as shown below:

Dii = −ei ·
�
∂σ

� r × dS, (A 6)

The results obtained from these computations were compared with those of Fernandes
et al. (2008) (see figure 21). A good comparison was observed for A but, slight
discrepancies are noticed for D, which was obtained by matching only the asymptotic
value at χ → ∞. Hence, we propose the following modified formula for the added-
moment coefficient that matches our numerical results:

D11 = D22 =
d3ρf

90
(χ + 0.2χ1/2). (A 7)

The added-moment coefficient D33 is zero due to symmetry.
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Figure 21. A comparison of the computed virtual-mass coefficients, against theoretical results
obtained from Fernandes et al. (2008), as a function of aspect ratio: (a) components of the
added-mass tensor (A) non-dimensionalized using the mass of the displaced fluid (mf ); (b)
component of the added-moment of inertia tensor (D) non-dimensionalized using the rotational
moment of inertial J11.

Appendix B. Euler angle calculations
The Euler parameters Θ = (ε1, ε2, ε3, η)T can be computed from the Euler angles

(φ, θ, ψ) using the relationships given below (Goldstein et al. 2002):

ε1 = cos
φ − ψ

2
sin

θ

2
, ε2 = sin

φ − ψ

2
sin

θ

2
, (B 1)

ε3 = sin
φ + ψ

2
cos

θ

2
, η = cos

φ + ψ

2
cos

θ

2
. (B 2)

The initial orientation of the disk was specified in terms of the Euler angles, which was
then used to compute the Euler parameters. The equations of rotational motion were
then computed using the Euler parameters. The rotational transformation matrix R
and the matrix describing the rate of change of the Euler parameters E were computed
using the following relationships (Goldstein et al. 2002):

R =

⎛
⎜⎜⎜⎝

1 − 2(ε2
2 + ε2

3) 2(ε1ε2 + ε3η) 2(ε1ε3 − ε2η)

2(ε2ε1 − ε3η) 1 − 2(ε2
3 + ε2

1) 2(ε2ε3 + ε1η)

2(ε3ε1 + ε2η) 2(ε3ε2 − ε1η) 1 − 2(ε2
1 + ε2

2)

⎞
⎟⎟⎟⎠ , (B 3)

E =

⎛
⎜⎜⎜⎜⎝

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

−ε1 −ε2 −ε3

⎞
⎟⎟⎟⎟⎠ . (B 4)

All computations for the body motion were performed using the Euler parameters.
The Euler angles were then back calculated from the Euler parameters for output.

Supplementary movies are available at journals.cambridge.org/flm.



486 A. R. Shenoy and C. Kleinstreuer

REFERENCES

Abelev, A. V., Valent, P. J. & Holland, K. T. 2007 Behaviour of a large cylinder in free-fall
through water. IEEE J. Ocean. Engng 32 (1), 10–20.

Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209–221.

Auguste, F., Fabre, D. & Magnaudet, J. 2010 Bifurcations in the wake of a thick circular disk.
Theor. Comput. Fluid Dyn. 24, 305–313.

Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake
of a circular cylinder. J. Fluid Mech. 322, 215–241.

Barth, T. & Jespersen, D. 1989 The design and application of upwind schemes on unstructured
meshes. AIAA Paper 89–0366.

Belmonte, A., Eisenberg, H. & Moses, E. 1998 From flutter to tumble: inertial drag and Froude
similarity in falling paper. Phys. Rev. Lett. 81 (2), 345–348.

Berger, E., Scholz, D. & Schumm, M. M. 1990 Coherent vortex structures in the wake of a sphere
and a circular disk at rest and under forced vibrations. J. Fluids Struct. 4, 231–257.
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